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It is proven that the chaotic inflationary scenario is not realistic and in many 
essential points is false. 

1. Inflationary cosmological scenarios are very popular, and many 
works, reports, and surveys on inflation have been published; in fact, it has 
become natural to refer to an inflationary paradigm [some reviews even 
carry this as their title (Turner, 1986)]. In this report I prove that the 
inflationary scenarios are not realistic and in many essential points are false. 2 

Following the pioneering work of Guth (1981), various scenarios of 
an inflationary universe were proposed [for recent reviews see Linde (1984a) 
and Turner (1986)]. The aim of these inflationary scenarios is the solution 
[without using the anthropic pr inciple--on the use of this principle see 
Sakharov (1984), for example] of many cosmological problems and the 
explanation of  many properties of the observable (homogeneous, flat, 
monopole-free) universe. With the natural assumption of the uniqueness 
of the unified universe, 3 the explanation of the observable properties of the 
unique (unified) universe on the basis of a unique (exotic) mechanism or 
on the basis of unique (exotic) initial conditions hardly can be considered 
as a sufficiently meaningful scientific explanation. But the proposal in 
Albreicht and Steinhardt (1982) and Linde (1983a) of a "new scenario" 

~Leningrad Division, Steklov Mathematical Institute, USSR Academy of Science, 191011 
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2This report is based on my previous work (Khalfin, 1984, 1985, 1986, 1987a, 1988) and also 
gives some new results. 

3This is factual, not an assumption, but the tautological definition of  the unique unified universe. 
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based on phase transitions like the Coleman-Weinberg model with fine 
tuning looks like such an exotic "nonscientific" explanation. One of the 
author's of the "new scenario" now states 4 that it "was originated with the 
impression that the inflation (durationally exponential inflation) of the 
universe is a sufficiently exotic phenomenon. . ,  which can be realized only 
in very limited sets of theories" (Linde, 1983a). In addition, Hawking (1988) 
states, "On my personal point of view the new inflationary model is now 
dead as scientific theory, although a lot of people do not seem to have 
heard of its demise and are still writing papers as if it were viable." Besides 
intrinsic obstacles of the "new scenario," which were discussed in Linde 
(1984a), I point out that all inflation scenarios, which are based on phase 
transitions, use for an estimation of the duration period of the inflation (the 
kinetics of the phase transition) a Euclidean approach, in particular the 
Langer-Polyakov-Coleman instanton method. However, I recently proved 
(Khalfin, 1987b) that this very popular method is incorrect. I do not go 
into the details of this proof (Khalfin, 1987b), but only point out here that 
the reason for the incorrectness of the Langer-Polyakov-Coleman method 
corresponds to the fact that the nonexponential (Khalfin, 1957, 1958, 1960) 
terms in the physical (Minkowski) amplitude of the decay are essential only 
for very big times, but for the Euclidean amplitude of the decay, which is 
evaluated in the Langer-Polyakov-Coleman method, the nonexponential 
terms are essential (bigger than exponential ones) for finite times. The 
problem of the evaluation of a duration period for inflationary (the kinetics 
of the phase transitions) scenarios, which are based on phase transitions, 
will be discussed in a separate work. 

Linde (1983a, b) proposed the chaotic inflationary scenario: "Thus, the 
inflation of the universe is not an exotic phenomenon, which is only possible 
in some special Coleman-Weinberg models, but it is a natural consequence 
of chaotic initial conditions in the early universe, which are realized in a 
wide class of elementary particles theories" (Linde, 1983a). Besides sol- 
utions of many cosmological problems, as in previous inflationary scenarios 
(Guth, 1981; Linde, 1982; Albreicht and Steinhardt, 1982), the chaotic 
inflationary scenario, as stated by its author, reduces to a new and cardinal 
deduction on the formation of an infinitely large number of "mini' '-universes 
which can have some properties different from properties of "our" universe. 
Thus, the chaotic inflationary scenario predicts, the essentially "macro" 
inhomogeneity of the unique (unified) universe. Linde (1984a) stated that 
the realization of the "new" scenario inside the relict inflation in supergravity 
is possible only in the Chaotic scenario. Linde (1984a) also stated that the 
quantum origin of the universe [see, for example, Linde (1984b)] can be 

4I expressed such an opinion to A. D. Linde immediately after his first report (Linde, 1981) 
on the "new scenario." 
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realized in the chaotic scenario, too. Recent work (Linde, 1986; Goncharov 
and Linde, 1987) on the chaotic scenario has proposed the idea of an 
eternally existing, self-reproducing, chaotic inflationary universe. 

I have shown (Khalfin, 1984, 1985, 1986, 1987a, 1988), on the basis of 
probability theory, that the chaotic inflationary scenario is not realistic (and 
in many essential points this scenario is false). In this work I give correspond- 
ing proofs in the most general case, which is more general than in Khalfin 
(1984, 1985, 1986, 1987a, 1988) and Guth (1981). The discussion of the 
idea of a self-reproducing, chaotic inflationary universe, in connection with 
these proofs, will be given in a separate work. 

2. Rubakov et al. (1982), Hawking (1985), Starobinsky (1985a), and 
Lyth (1984, 1985) obtained some limitations on inflationary models of the 
universe. 5 These limitations are general and do not depend on the details 
of the mechanism of the inflationary models. These limitations are based 
on the usual assumption of the homogeneity of the scale factor (the exponen- 
tial inflation is spatially homogeneous). On the base of these limitations I 
obtained (Khalfin, 1985, 1986, 1987a, 1988) additional limitations on the 
initial conditions of the inflationary models. These additional limitations 
follow from the admissible space inhomogeneity of the scale factor (admis- 
sible space inhomogeneity of the exponential inflation). Here I recall the 
main formulas of these additional limitations (Khalfin, 1985, 1986, 1987a, 
1988). 

For all inflationary models the necessary condition on the admissible 
inhomogeneity of the initial scalar field (q~ (x) must be fulfilled [the notations 
correspond to Khalfin (1986)] 

(Wp) 2-< V(q~)~lV~l=~V~/2(q~(x)), ~<-1 (1) 

The Hubble "constant" 

H(x) = [(87r/3m~) g(@(x))] 1/2 (2) 

depends on the scalar field ~0(x), which depends on x, and for this reason 
the Hubble constant is spatial inhomogeneous. Let us denote 9o = r  = 0), 
where x = 0  is the mean point of a space region with size l = 2 H  J, which 
by exponential (quasiexponential) inflation turn into the visible universe 
with the size = 1028 cm. The scale factor R, defined by (Kofman et aL, 1985), 

{4rr q~2o ] R --~exp\ nm~] (3) 

sI thank Dr. D. H. Lyth for information on Lyth (1984, 1985). 
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where the potential V(q~) is V(~0) = a , r  n, is given by 

R = exp 4~ = exp(64N2), N-> 1 (4) 
\ nmp/ 

On the basis of (4), we have 

q~o=e( n )  l /2mpN (5) 

The exponential amplification in the scale factor R and in the Hubble 
constant inhomogeneities of the initial scalar field q~(x) are (Khalfin, 1985, 
1986, 1987a, 1988) 6 

6R R ( x = O + l ) - R ( x = O )  
R R ( x  = o) 

= exp [+ f t .  16(2-~)1/2N+/326] - 1  

= + 1 6 f l N ( 3  ) ,/2 

6H H ( x = O •  
H H(x=O)  

1 / 3 \1/2 
= + / 3 1 - ~  ~ 2 - ~ )  (6) 

Note that the scale inhomogeneity, which corresponds to the scale 
inhomogeneity of the scale factor R(x)  and the Hubble constant H(x) ,  is 
connected with the definite choice of the coordinate frame. This coordinate 
frame is chosen such that for q~(x) = const(x), Vx, the metric is defined by 
[see Starobinsky (1983) for notations] 

ds 2 = dt 2 - [ em a~o(x) + b~o(x) 

+ e -m c,~t~(x) + . . .  ] dx '~ dx ~ (7) 

Note that consideration is limited here to an "initial" inhomogeneity, and 
we do not consider "second" inhomogeneities, which are connected with 
the evolution of quantum fluctuations in the spatial inhomogeneity, 
exponentially inflated universe. 

Let us now choose N = 1. In this case the space region of size l = 2H -1 
is transformed by the exponential inflation into the "visible" universe of 
size =1028 cm. This minimally necessary exponential inflation gives us the 

\ \ 

6Limitations analogous to (6) were independently obtained by Starobinsky (1985b). 
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solution 7 of  some cosmological problems and at the same time gives us the 
possibility to connect the observable properties of  the "visible" universe 
with the predictions of  inflationary models for different N. In the case N = 1 
formula (5) becomes 

~Oo = 4 mp (5a) 

and formula (6) becomes 

• , (6a) 
R 

Experimental  data (Abbott  and Wise, 1984) indicate that the admissible 
space inhomogeneity of  "our"  universe has the value of order -~ 10 -6. Then 
on the basis of  (6a) we can give an estimate on the admissible inhomogeneity 
of  the initial scalar field ~(x)  in the domain of size l ~ 2 H - 1 :  

/3 ~ 10 -6 (8) 

This initial domain exponentially inflates to the "visible" universe. From 
(8) it follows that 

[ [Vpl -< 10-6aln/2 4 mpJ (9) 

For the potential  V(~) = ~A~, 4 [this potential was used in the chaotic scenario 
(Linde, 1983a, b)], to take into account bounds (Rubakov et al., 1982; 
Hawking, 1985; Starobinsky, 1985a; Lyth, 1984, 1985) on A we take from (9) 

IV l-< 10-~lm2p (10) 

For the potential  8 V(r  ~ 2 2 = ~rn q~ , to take into account bounds (Rubakov et  

al., 1982; Hawking, 1985; Starobinsky, 1985a; Lyth, 1984, 1985) on m 2 we 
take from (9) the same (in the order of  value) inequality as (10). 

I f  we choose N >> 1, which corresponds, according to (5), to a large 
value of the initial scalar field q~0 [as was assumed in work on the chaotic 
inflationary scenario (Linde, 1984a, 1983b)], then the space in homogeneity 
(6) cannot be connected with possible observable data of  the space 
inhomogeneity of  the "visible" universe. This is evident because for N >> 1 
the space domain of size I--- 2 H  -1 exponentially inflates to a universe whose 
size is much much greater than the size (=  102s cm) of the "visible" universe. 
In this case a space domain of size smaller than l-~ 2 H  -~ inflates to the 
size of  the "visible" universe and for this reason instead of (8) the limitations 
are much weaker until 13 - 1. However,  f rom our point of  view the a prior i  

7For comments on this solution see the end of this report. 
SA full investigation of the classical dynamics of this model is given in Belinsky et al. (1985). 
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choice N >> 1 is nonphysical, first of all, because this choice does not follow 
necessarily from the solution of cosmological problems, and second (this 
is more essential) the predictions (6) following from this choice N >> 1 on 
the space inhomogeneity of  a universe whose size is much larger than the 
size of the "visible" (=1028 cm) universe cannot be tested by observations 
(experiments) in principle. Predictions which cannot be tested by observa- 
tions or by experiments are impossible to consider as scientific predictions. 
Usually, the work on the chaotic inflationary scenario (Linde, 1984a, 1983b) 
assumes that the choice N >> 1 yields as its main prediction the homogeneity 
of  "our"  visible universe. But we knew, a priori  to this scenario, that our 
visible universe is very homogeneous and from this point of view the 
conclusion from the chaotic scenario on the homogeneity of the visible 
(1028 cm) universe is not a prediction, but is no more than a "religious" 
explanation of this homogeneity, because the necessary choice N >> 1, 
contrary to N = 1, cannot be proved by independent scientific reasons. The 
real physical prediction of  the chaotic inflationary scenario with the choice 
N >> 1 is the prediction of the great inhomogeneity of "our"  universe on an 
"invisible" scale (>> 1028 cm) and this prediction is not a scientific prediction, 
because it cannot be tested by observations in principle. 

3. The above bounds (9) and (10) are not the bounds on the parameters 
A and m of  the physical models as in Rubakov et al. (1982), Hawking 
(1985), Starobinsky (1985a), and Lyth (1984, 1985), bounds on the initial 
conditions [on the admissible inhomogeneity of the initial scalar field ~p(x)]. 
These new bounds, which follow from the admissible space inhomogeneity 
of  the "visible" universe, have no physical foundation and look like ad  hoc 
a posteriori  limitations, which are sufficient for the correctness of the 
inflationary model of the origin of "our"  universe. Even if we understood 
the theory of  the universe in the preinflation era (as might be possible in 
a future quantum.theory of  gravity) and could consider initial conditions 
of the inflationary era as consequences of the preinflationary era, we 
nevertheless could not solve the problem of the initial conditions. In fact, 
in this case the bounds (9), (10) will be simply transformed into the 
corresponding initial conditions of the preinflationary era. Only one radical 
way is possible for the solution of the initial conditions problem--namely,  
if the admissible inflation takes place for "almost all" initial conditions 
(compare this with the situation in the ergodic theorem, or with the existence 
of  limited cycles for the solutions of nonlinear differential equations). In 
fact, this hope was the initial point in the foundation of  the chaotic inflation- 
ary scenario as proposed by Linde (1983a, b). In this chaotic scenario initial 
scalar fields r  were assumed to be deterministic realizations of  random 
(stochastic) fields. The problem of whether the deterministic realizations 
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(initial scalar fields) of random fields satisfy the necessary bounds and with 
what probability (what measure) is one of the classical problems of probabil- 
ity theory. This problem has both brilliant results and at the same time 
unsolved questions (see, for example, News, 1978). A trivial result states 
that the stationary random Gaussian process of "white noise" does not 
have continuous deterministic realizations. As an example of a very non- 
trivial result (Sudakov, 1976), I point out that for a sufficiently large set of  
the random fields the property of  having continuous and bounded deter- 
ministic realizations satisfies the law "zero or identity." This means that 
either all deterministic realizations of these random fields have such a 
property or they do not. The definition of random fields corresponds to the 
definition of the probabilistic measure in the corresponding functional space. 
If the set of random fields (the set of probabilistic measures), deterministic 
realizations of which satisfy the necessary (see Section 2) conditions for 
the admissible inflation are sufficiently large, then the chaotic inflation 
scenario can in fact claim the scientific solution of many cosmological and 
fundamental conceptual problems. But if the deterministic realizations 
necessary for the admissible inflation have only degenerate, exotic 9 random 
fields or the measure of such necessary deterministic realizations is 
anomalously small, then the claims of the chaotic inflation scenario of the 
universe are false and cannot be considered as scientifically substantial (see 
the corresponding discussion in Section 1). In this work and in Khalfin 
(1985, 1986, 1987a, 1988) it was proved that the last alternative, unfortu- 
nately, is true for the chaotic inflationary scenarios of the universe. 

The fact that the main problem for the chaotic inflationary models is 
that of estimating the probability (the measure) of the existence of deter- 
ministic realizations [initial scalar fields ~(x)]  which have the necessary 
properties for the inflation was pointed out in Zel 'dovich et al. (1987), 
Belinsky and Khalatnikov (1987), Starobinsky (1987), Page (1987a, b), Gib- 
bons et al. (1987), and Hawking and Page (1987). As Belinsky notes (see 
Belinsky and Khalatnikov, 1987), the corresponding measure was defined 
in a voluntaristic way as uniform, following the "indifference principle." 
In the modern probability theory the danger of this principle is well known. 
Gibbons et al. (1987) defined, but only for homogeneous cosmological 
models, the "privileged" measure. As demonstrated in Page (1987b) and 
Hawking and Page (1987), using this measure reduces the ambiguity in the 
estimation of the measure of the deterministic realizations necessary for the 
properties of  inflationary models; 

What must be the a priori limitations on the random fields whose 
deterministic realizations are the initial scalar fields q~ (x) in the inflationary 

9It is obvious that  such a degenerate (exotic) random field is the deterministic field constructed 
"by hand"  ad hoc as necessary for the inflation properties. 



1116 Khalfln 

models? The main and fundamental limitation is connected with the 
existence of the horizon. From the probability theory point of view this 
means that the correlation function r(x) of the homogeneous scalar field 
~:(x) [realizations of ~:(x) are the initial scalar fields r  

r(x) = E[~:(x) �9 ~*(0)] (11) 

must have finite support of  x: 

r(x) = 0,  Ixl ~ I (12) 

where I is the size of  the horizon. The condition (12) is very essential, 
because this condition reduces to the fundamental limitations on the spectral 
densityf(A ) of the random field ~:(x). This spectral densi tyf(h  ) is connected 
with the correlation function r(x) on the basis of the Bochner-Kninchin 
theorem (Bochner, 1933) by the Fourier transform ~~ 

r ( x ) =  l~o~ exp( iAx)- f (A)  dA (13) 

From (13) it follows that 

f (  A ) = j ~  I ~  exp(-iAx) . r(x) dx (14) 

Taking into account the property of the horizon (12), we have 

f (A)  =~--s _ exp ( - iAx) ,  r(x)  dx (14a) 

From (14) it follows immediately that (Paley and Wiener, 1934) f (A)  [on 
the basis of  the horizon property (12)] is an entire function of  A and must 
necessarily satisfy the condition: 

]f ~o log If(A)] 
J _~ -1+--~ d A <+oc  (15) 

From (15) and from the fact that f ( h )  is an entire function it follows that: 
(a) f (h)  cannot be a function of h with finite support: f (h)  ~ 0 for [h[ --> A < 
+co; (b ) f (A)  cannot be zero for finite intervals of h : f ( h ) #  O, h ~ [ha, h2], 
- ec  < h~ < A2 < oc; and (c) f (h)  cannot decrease very rapidly (exponentially) 
for h -~ oo, 

If(X)l---Aexp(-3,1AIq), A > 0 ,  y > 0 ,  q < l ;  A--)oc (16) 

The properties (a)-(c) are very essential, but they were not taken into 
account in Linde (1986). From this point of  view the main qualitative (and 
quantitative) statements of  Linde (1986) are false. A discussion of that work 
in connection with this comment will be published separately. 

l~ condition (13) is true for random fields with absolutely continuous spectrum. 
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The definition of  random fields ~:(x), the deterministic realizations of 
which are the initial scalar fields q~ (x), originates with the quantum theory 
of  these scalar fields. From this point of  view the consideration below of 
the Gaussian random fields is natural. In addition, the limitation to Gaussian 
fields is also stipulated by purely mathematical reasons, because for non- 
Gaussian random fields we have no possibility to receive sufficiently mean- 
ingful estimates for interesting probabilities. 

In the original work proposing the chaotic inflationary scenario (Linde, 
1983a, b), it was explicitly assumed that deterministic realizations [scalar 
fields ~(x)]  of the random fields exist which are constant in the domains 
of  the size l = 2 H  -1. In fact, Linde (1983b, p. 178) states, "in the open 
(infinite) universe at t---tp there should exist infinitely many locally 
homogeneous and isotropic domains of size l >> mp ~, containing a locally 
homogeneous field r such that mp ~< q~ ~ mp/A 1/4,, [italics added]. And, "let 
us consider the evolution of the locally homogeneous field in the early 
universe. The part of the universe inside a domain filled with a homogeneous 
field q~ expands as de Sitter space with the scale factor a(t)  = ao exp(Ht) ,  
where H = t~TrV(r ~/2'' [italics added]. Linde (1983a) stated that the 
probability of  such locally homogeneous scalar fields inside domains of 
size l = 2 H  -~ in the volume is nonzero. What is more, Linde (1983a) gives 
as a reference for the proof  of this statement Linde (1983c), which in fact 
does not exist, nor does the corresponding proof  exist in any of Linde's 
published work. But this proof  cannot be in Linde's publications, because 
nowhere in these works is there a mathematical definition of the correspond- 
ing random fields, i.e., a mathematical definition of  the measure in the 
corresponding functional space. In reality, for a very sufficiently large set 
of  random fields the probability of  the existence of locally homogeneous 
deterministic realizations is rigorously zero. In order not to complicate the 
mathematical proof  with technical details, I limit myself here to one- 
dimensional random fields (processes). 

The proof  of the statement is based on the inequality (Lukacs, 1960) 

_ x2 1 - B2x~ 
[r(x) l< 1 8 x  2 ) ,  x < X < ~  (17) 

where B and X are defined by 

[ r ( x ) l -  B-< 1 for x>_X <oo  (18) 

The existence of locally homogeneous deterministic realizations in the finite 
interval of  size l means that r(x) has the property 

r(x) = 1, x a [0, I] (19) 

It is obvious that [if f (A)  is not a Dirac 6-function, which was assumed 
from the beginning] X exists such that l <  X < oo, and B < 1. Then the 
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assumption on the existence of locally homogeneous deterministic realiza- 
tions in the interval of size l [see (19)] evidently contradicts the inequality 
(17) and thus our statement is proven. The analogous proof  is true in the 
many-dimensional case and for the general geometry (but not necessarily 
Euclidean geometry) of  a space on which the initial scalar field ~(x)  was 
defined. 

Recent publications on the chaotic inflationary scenario (see, for 
example, Linde, 1986) now refer to the almost homogeneous fields ~(x).  
But estimates of the probability of the existence of almost homogeneous 
deterministic realizations of  the random fields reduces to considering the 
reality of the idea of  the chaotic inflationary scenario as proposed in Linde 
(1983a, b). Estimates of the probability of the existence of almost 
homogeneous deterministic realizations cannot be obtained beyond proba- 
bility theory, which gives the necessary estimates. These estimates are 
obtained in the new mathematical results in the theory of random fields 
proved by B. S. Tzirel'son (unpublished, April 1985) (and in the simple 
case also by M. A. Lifshitz) and was stimulated by problems in Khalfin 
(1985). Taking into account recent work on the chaotic inflationary scenario 
in which the case of high-dimensional spaces was considered, here, in 
contrast to Khalfin (1985), I treat the results of  Lifshitz and Tzirel'son 
(1986) in the most general case. Let r x ~ R ' ,  be the homogeneous 
Gaussian random field with continuous ~ deterministic realizations, and 
f(A ), A ~ R n, be the spectral density of the absolutely continuous component 
of the spectral measure. Tzirel'son's theorem gives the exponential estimates 
(from above) for the probability of small deviations of deterministic realiz- 
ations of the random fields near a fixed surface: 

Theorem (B. S. Tzirel'son, 1985). Let the function A: R'--> R ~ be con- 
tinuous, and B(x): R" -> [0, +00) be lower semicontinuous. Then 

P{Vx ~ R' ,  I~(x) - A(x)l-< B(x)} 

where 

r/[c] = - I n  (27r) -1/2 exp( -u2 /2 )  du 

(21) 
m(K)=essinf[(2~rK-~)" Y. f(A+2rrK-'z)] 

A ~ R  n [_ Z C Z  n 

From this theorem we get the following result. 

liThe scalar fields ~(x), which are considered as the deterministic realizations of the random 
fields, must be not only continuous, but also differentiable in the chaotic inflationary scenario. 
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Corollary. Let f ( h ) - - a l h [  -~-~ for [AI---A. For e > O  let 

where M = max(n, 4). Let us assume that K A -  < ~. Then, for every closed 
set TDR" and for every continuous function A: T~R the following 
inequality holds: 

P{Vxe T, I~(x)-e(x)[<- e}<--exp[-a(27r)-lK -" mes T] (22) 

The proof  of this Corollary essentially depends on the following 
geometric lemma by Tzirel'son. 

Lemma (Tzirel'son, 1985). Let positive numbers d and b be such that 
2 d -  b. Then for every h ~ R" there exists z ~ 7/" such that 

d -< [A + bz[ <-�89 (23) 

where M = max(n, 4). 
Note that, based on consequence (c) of the property of the horizon 

(12) in the definition of the function re(K), the summation takes place 
essentially on the infinite number of integer points of  ~". 

Now we formulate Tzirel'son's Theorem and Corollary for the usual 
3-dimensional case and flat initial surface. So let n = 3, A(x) = ~o = const(x), 
and B(x)=A=const(x), let T =  S 3 be the sphere of the radius l~-2H -1, 
and let e = A = const(x) and a = 3 + 6. 

Theorem. Let ~(x), x ~ R 3, be a random Gaussian homogeneous field 
with differentiable realizations ~p(x) and f ( h ) ,  where h ~ R 3 is the spectral 
density of  this field. Suppose that for all K > 0 there is defined a function 
re(K):  

~ R  3 L k K ]  ~ 3 f  

Then for all x c S 3 the following exponential estimate holds: 

f r l )  a 

where 

A l +A/ml/2( K ) U2 
~7[ml/T(Ki ] = - I n  ! (2"n')-1/2 e x p ( - ~  -)  du 

d--A/ml/2(K) 



1120 Khalfin 

Corollary. Let s~(x), r and A be as in the theorem. Let G > 0 and 
Q > 0 be such that 12 

a 
f (A)  = ih[5+~ for [A[>_Q (24) 

The condition (24) guarantees differentiability of the scalar field r  
realizations of the homogeneous random Gaussian field ~:(x). For h _> 0 we 
define the quantity q: 

q = 27r el/3(2A2/~'a)1/2+e 

Using the definition of the spectral density f (A)  in terms of the Fourier 
transform of  the correlation function of  the random field r we can 
readily show that q has the dimensions of  a length. We now suppose that 
Qq <- rr. Then for all x ~ R 3 we have the following exponential estimate: 

(") t//--T2+E4 13x~ -- 94"B" 7 P{Vx s 3, l e ( x )  -  ol- -< exp ~r~3 ) - exp (25) 

The estimates (20a) and (25) give estimates of the probability of realizations 
with given inhomogeneity A in the sphere S 3 of the Gaussian random field. 
These estimates depend explicitly on a functional m ( K )  of the spectral 
density of  the Gaussian random field and thus are not universal. In any 
case, we must satisfy necessary fundamental limitations like (16), which 
follow from the existence of the finite horizon, and these limitations are 
satisfied in the corollary. Recently for the one-dimensional case n = 1 
Tzirel'son proved the universal estimate which directly follows from the 
existence of a finite horizon: 

Theorem (Tzirel'son, 1988). Let {r ( . . . .  ) be a stationary 
(homogeneous) random Gaussian process with covariance function 
Cov(~:( t 1)~(t2)) with finite support (finite horizon): 

Cov(~:(tl)~(t2))=0 for [ t l - t 2 [>  To<+Oo (26) 

Then for all t 6 (0, To) for e -  0 the following estimate holds: 

lnPts~[o,,lmax Ir ~--(l+o(1))4at/(To+t) In (27) 

where 

1 r = x  u 

a ( x ) ~ f ~ J  ~ l n c t g ~ d u  for x ~ [ 0 , 1 ]  

12The assumption (24) is admissible with the fundamental necessary bound (16). 
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For x + 0 ,  a ( x ) - ~ x  In x. The estimate (27) is universal, and depends only 
on the size of  the horizon To and does not depend on other details of the 
correlation (covariance) function. For higher dimensions (n->2) the 
analogous general results are not known. 

It follows from (25) that for A =0  the corresponding probability of 
realizations that are constant (homogeneous) in the sphere S3 is strictly 
equal to zero. This result was proved above in the general case and not 
only for Gaussian random fields. The estimates (20a) and (25) are, of  course, 
of  greatest interest for A ~ 0. For sufficiently small A, the estimates (20a) 
and (25) are sufficiently accurate. We now recall the estimates obtained 
earlier for the permitted inhomogeneity of the initial scalar fields, namely 
(8). Then 

A ~ 10-6q)o (28) 

AS follows from (24), a is proportional to the variance ~2. In the chaotic 
scenario, it is assumed that ~o/(q5o2) 1/2= 1. Then, from (25), on the basis of 
(28), taking into account that l~-2H -l, we obtain the final exponential 
estimate: 

P{VxES3,1~(x)--~po[<-lO-6q~o}<--exp(--1034 ) (!) (29) 

The estimate (25) corresponds to N = 1--the case which is natural and from 
the physical point of view is justified. For N >> 1 the estimates corresponding 
to (29) are less limited, but as was argued above, the case N >> 1 is non- 
physical and has no scientific foundation. I point out once more that pr ior  
to the result of Lifshitz and Tzirel'son (1986) there were no mathematical 
estimates of the probability of the admissible space inhomogeneity of the 
initial scalar field. 

From (29) it follows that the probability of the origin of "our"  universe 
(and "all of  us") with the admissible space inhomogeneity is fantastically 
small exp(-1034), but the probability of the origin of  universes that are not 
"ours"  is fantastically larger than the probability of  the origin of  "our"  
universe. 

As we know from quantum theory, especially after the fundamental 
inequality of  Bell (1965) (see also Cirelson, 1980; Khalfin and Tzirel'son, 
1985), "God  plays dice," but it is hard to represent that with such fantastic 
accuracy. 
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